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a b s t r a c t

The development of efficient algorithms to analyze complex electromagnetic structures is
of topical interest. Application of these algorithms in commercial solvers requires rigorous
error controllability. In this paper we focus on the perfectly matched layer based multilevel
fast multipole algorithm (PML-MLFMA), a dedicated technique constructed to efficiently
analyze large planar structures. More specifically the crux of the algorithm, viz. the perti-
nent layered medium Green functions, is under investigation. Therefore, particular atten-
tion is paid to the plane wave decomposition for 2-D homogeneous space Green
functions in very lossy media, as needed in the PML-MLFMA. The result of the investiga-
tions is twofold. First, upper bounds expressing the required number of samples in the
plane wave decomposition as a function of a preset accuracy are rigorously derived. These
formulas can be used in 2-D homogeneous (lossy) media MLFMAs. Second, a more heuristic
approach to control the error of the PML-MLFMA’s Green functions is presented. The theory
is verified by means of several numerical experiments.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

During the past decades many efficient schemes for solving radiation and scattering by/from electrically large objects
have been developed. The Fast Multipole Method (FMM) and the Multilevel Fast Multipole Algorithm (MLFMA) [1–4] are
widely known. Application of the addition theorem leads to a diagonalization of the translator. This yields fast matrix-vector
multiplications, as required in iterative solution schemes, and a significant reduction in memory requirements.

An important class of structures of topical interest are planar layered media problems, since they occur in many applica-
tion areas such as RF/microwave electronics (monolithic microwave integrated circuits, planar antenna arrays, multilayered
laminated printed circuit boards, etc.) and also in remote sensing (detection of buried objects, scattering of structures in the
presence of stratified media, etc.). Another fast algorithm that is based on a diagonal factorization is the Fast Inhomogeneous
Plane Wave Algorithm (FIPWA) [5]. This algorithm has been extended to layered medium problems [6,7] and is based on the
spectral integral representation of the pertinent layered medium Green function, using propagating and evanescent plane
waves. Also, perfectly matched layers (PMLs) [8,9] can be exploited in an analytical way to expand open layered medium
Green functions in a series of modes [10,11]. Upon application of the PML’s complex thickness paradigm, the series appear
in a very natural way. Subsequently, these series can be combined with the FMM or with a MLFMA. Such dedicated fast algo-
rithms for the efficient analysis of large layered medium problems, i.e. the PML-FMM and the PML-MLFMA, were recently
developed [12,13], without having to compute cumbersome steepest descent path integrations.

The error controllability of the above described fast algorithms for layered media analysis is an important issue. On the
one hand, it is crucial that the error sources can be clearly identified. On the other hand, heuristics need to be implemented
. All rights reserved.
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that allow an easy automatic error setting of the fast algorithms. This makes them accessible for end-users who do not have a
deep insight into the underlaying mathematics and physics of the algorithm, but are unknowingly using them, e.g. in
RF/microwave design tools. Interesting studies of the error controllability of the FIPWA have already been published [14,15].

A thorough investigation of the error controllability of the PML-MLFMA is presented in this paper. The focus is on the crux
of the algorithm, viz. the pertinent layered medium Green functions. These Green functions are expanded in a series of
modes and each mode corresponds to a 2-D homogeneous space Green function. Hence, each mode can be decomposed into
a set of plane waves, and therefore this plane wave decomposition has to be thoroughly investigated. Such error analysis has
already been conducted for 2-D MLFMAs in lossless homogeneous background media [4,16]. In this paper, however, the
focus is on the (quasi-)bandlimitedness of the 2-D radiation patterns in very lossy homogenous media, leading to two inter-
esting results. Firstly, upper bounds for the required number of plane waves in a 2-D MLFMA in order to obtain a desired
accuracy are rigorously derived. These formulas are immediately employable in 2-D MLFMAs to simulate scattering in very
lossy background media. Secondly, a heuristic scheme, based on these upper bounds, is proposed to control the layered med-
ium Green function’s error. The usefulness of the upper bounds and of the heuristic approach are verified and demonstrated
by means of several numerical experiments.

In Section 2 the PML-MLFMA is first briefly reviewed. Second, a qualitative discussion of its main error sources is pre-
sented. Third, we focus on the spectral content of the radiation patterns associated with the different modes, leading to
new upper bounds that are applicable in general (lossy) 2-D homogeneous media. In Section 3 these formulas are numeri-
cally verified. Next, the error controllability of the complete expansion of the layered medium Green functions into modes
and plane waves is demonstrated and an heuristic scheme is presented, which allows the presetting of a desired accuracy of
the PML-MLFMA’s Green functions. This is again illustrated by numerical experiments.

2. Analysis of the PML-MLFMA’s error sources

In the sequel, all sources and fields are assumed time-harmonic with angular frequency x and time dependencies ejxt are
suppressed.

2.1. The layered medium Green functions

To analyze the error in the PML-MLFMA, we focus on the crux of the algorithm, i.e. the pertinent layered medium Green
functions. Consider a microstrip configuration consisting of an infinite perfect electrically conducting (PEC)-backed substrate
of thickness d, permittivity �1 ¼ �0�r , and permeability l1 ¼ l0lr; here �0 and l0 denote the permittivity and permeability of
the air half-space z > d above the substrate. The air half-space is closed by an PEC-backed perfectly matched layer (PML),
which is equivalent to closing the half-space with a PEC plate placed at a complex distance ~D above the substrate [10,11]
(Fig. 1). At the substrate-air interface z ¼ d, a source located at r0 ¼ x0x̂þ y0ŷ þ dẑ resides in a source group of radius R
Fig. 1. Constellation of a source and an observation point on the substrate-air interface z ¼ d of a microstrip configuration.
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centered about rc
s and an observation point located at r ¼ xx̂þ yŷ þ dẑ resides in an observation group of radius R centered

about rc
o.

When only transverse-to-z currents at the substrate-air interface z ¼ d are considered, it is convenient to use the two
scalar layered medium Green functions GAðrjr0Þ and GV ðrjr0Þ – for the magnetic vector potential AðrÞ and the electric scalar
potential /ðrÞ, respectively – in a mixed potential integral equation (MPIE) formulation. This formulation, with two scalar
Green functions instead of dyadics, corresponds to the Formulation C of [17]. These Green functions represent the magnetic
potential and the electric potential at an observation point r caused by a dipole current at r0, and classically, they are deter-
mined by evaluating the time-consuming Sommerfeld-type integrals [18]. However, by application of the PML-paradigm
[10,11] the Green functions are expressed as a series of discrete TE- and TM-polarized modes, i.e.
GAðrjr0Þ ¼ � j
2

X
n

Hð2Þ0 ðbTE;njr� r0jÞ
MTEðbTE;nÞ

; ð1Þ

GV ðrjr0Þ ¼ � jx2

2

X
n

Hð2Þ0 ðbTE;njr� r0jÞ
b2

TE;nMTEðbTE;nÞ
þ j

2

X
n

Hð2Þ0 ðbTM;njr� r0jÞ
b2

TM;nMTMðbTM;nÞ
: ð2Þ
Here, Hð2Þ0 ð�Þ is the zeroth-order Hankel function of the second kind, and
MTEðbÞ ¼ d
l1

1

sin2 c1d
� cot c1d

l1c1
þ

~D
l0

1

sin2 c0
~D
� cot c0

~D
l0c0

; ð3Þ

MTMðbÞ ¼ �1 cot c1d
c3

1

þ �1d

c2
1 sin2 c1d

þ �0 cot c0
~D

c3
0

þ �0
~D

c2
0 sin2 c0

~D
; ð4Þ
with cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

m � b2
q

;m ¼ 0;1, and km ¼ x ffiffiffiffiffiffiffiffiffiffiffiffi
�mlm
p

;m ¼ 0;1. Theoretically, the summations in (1) and (2) extend over all
TE- and TM-polarized modes, which are represented by their wavenumbers bTX;n;n ¼ 1; . . . ;1. Here and in what follows
TX stands for TE and TM (X = E, M). For the microstrip configuration of Fig. 1, the TX-polarized modal wavenumbers bTX;n

satisfy the following dispersion relation:
YTX
1 cotðc1dÞ þ YTX

0 cotðc0
~DÞ ¼ 0; ð5Þ
with YTE
m ¼

cm
jxlm

and YTM
m ¼ jx�m

cm
;m ¼ 0;1. It is important to stress that these wavenumbers are located in the fourth quadrant

of the complex b-plane and that higher order modes have large negative imaginary parts. Hence, due to the decaying char-
acter of the Hankel functions, only a limited set of these modes is needed in practice.

Each Hankel function Hð2Þ0 ðbTX;njr� r0jÞ in the series (1) and (2) corresponds to the Green function of a 2-D homogeneous
space with wavenumber bTX;n. To construct a MLFMA, each such kernel is decomposed in terms of plane waves [4], i.e.
Hð2Þ0 ðbTX;njr� r0jÞ �
XQTX;n

q¼�QTX;n

ejbTX;nð/qÞ� r0�rc
sð Þ TqðbTX;n; jrcc

soj;/
cc
soÞe

�jbTX;nð/qÞ� r�rc
oð Þ

h i
; ð6Þ
where the diagonal translation operator Tq is defined as
TqðbTX;n; r;/Þ ¼
1

2Q TX;n þ 1

XQTX;n

q0¼�QTX;n

Hð2Þq0 ðbTX;nrÞejq0 /�/q�p
2ð Þ; ð7Þ
with rcc
so ¼ rc

o � rc
s ;/

cc
so ¼ arctan ŷ�rcc

so
x̂�rcc

so

� �
, and bTX;nð/Þ ¼ bTX;nðcos /x̂þ sin /ŷÞ. The sampling directions in (6) are uniformly dis-

tributed, i.e. /q ¼ 2qp
2Q TX;nþ1 ; q ¼ �QTX;n; . . . ;QTX;n, and Q TX;n depends on the modal wavenumber bTX;n.

Substitution of (6) into (1) and (2) yields the Green functions, suitable for application in the PML-MLFMA. These Green
functions can be interpreted as follows. The dipole source at r0 causes radiation by the source group. This source group’s radi-
ation pattern is sampled into sets of 2QTX;n þ 1 outgoing plane waves. There is one such set for each mode. Upon multipli-
cation with the diagonal translation operator (7), each set is converted into a set of 2Q TX;n þ 1 incoming plane waves arriving
at the observation group. There is one such set for each mode and there is no coupling between sampling directions or
modes. The incoming plane waves are evaluated at the observation point r. By using the proper mode-dependent weighting
factors, the magnetic vector potential and the electric scalar potential in the layered medium radiated by the dipole source,
viz. the pertinent layered medium Green functions, are computed.

2.2. Qualitative discussion of the PML-MLFMA’s main error sources

In this subsection, the three most significant sources of error in the PML-MLFMA are briefly discussed.
The first error source lies in the PML-paradigm. The convergence of the series has been detailed in [10,11]. We here repeat

the main findings that are relevant for the further reading of this paper. For a certain distance jr� r0j between the source and
the observation point, the limited number of modes used in the algorithm determines the precision of the modal expansions
(1) and (2). On the one hand, for small values of jr� r0j the series become impractical, since in that case too many modes are
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needed. Hence, when used in the PML-MLFMA, the Green functions are preferably not expanded into modes for evaluation of
the self-patch interaction. In the PML-MLFMA, as in most MLFMAs, self-patch interactions are handled by a classical evalu-
ation technique, and therefore, this error is not further discussed. On the other hand, to obtain a preset accuracy a decreasing
number of modes is needed for increasing distance jr� r0j. This property is exploited in the PML-MLFMA and illustrated in
Section 3.3.

The second source of error is due to the diagonal translation operator (7), which is the case for all MLFMAs. The absolute
value of the qth order Hankel function of the second kind increases faster than exponentially with q when this order is larger
than the absolute value of its argument jbTX;nrcc

soj. As the machine precision is limited, this causes numerical errors. For
increasing group size R, an increasing number of samples 2QTX;n þ 1 has to be used (see further). Hence, the precision of
the translation should be controlled by selecting a large enough buffer between the source group and the observation group,
i.e. by choosing the translation distance jrcc

soj large enough with respect to the group size R. In this context the term ‘well-
separateness’ is often used. Here, we adopt the concept of ‘buffer groups’. This is the minimal distance, divided by 2R, be-
tween a source group and an observation group below which the expansion (6) is not used. The choice of the number of buf-
fer groups has been discussed and demonstrated abundantly in [16].

The third source of error in the PML-MLFMA is the sampling of the radiation patterns for each mode. According to Ny-
quist’s theorem, a perfectly bandlimited radiation pattern can be reconstructed from its samples without loss of accuracy.
However, the radiation patterns as described above are not perfectly bandlimited. Also, as stated before, for each mode,
the number of samples 2QTX;n þ 1 depends on the wavenumber bTX;n. Because of its particular importance in the PML-
MLFMA, the spectral content of the radiation patterns for each mode is rigorously investigated in the next section. Of course,
apart from analytical considerations w.r.t. the sampling error, the decomposition into plane waves also induces numerical
errors in the PML-MLFMA. This is illustrated in Section 3.2.

2.3. Spectral content of the radiation patterns

For a given wavenumber bTX;n, the spectral content of the radiation pattern only depends on the size R of the groups. It has
been shown [4,19] that, if a large enough buffer between the source group and observation group is used, any desired accu-
racy for the plane wave decomposition (6) can be achieved, up to machine precision. Therefore, the number of samples used
in the plane wave decomposition has to be chosen as
QTX;n ¼ 2bTX;nRþ 1:8d2=3
0 ð2bTX;nRÞ1=3

; ð8Þ
where the constant d0 is the desired number of digits of accuracy of the plane wave decomposition. Eq. (8) is known as the
refined excess bandwidth formula. Of course, in its form (8), this formula is only valid for real wavenumbers bTX;n. Note, how-
ever, that in the PML-MLFMA, the Green function is written as a sum of many modes and that all modal wavenumbers bTX;n

are located in the fourth quadrant of the complex b-plane. Especially higher order modes can have significant imaginary
parts and hence, formula (8) may no longer be valid.

In the sequel it is shown that for each mode with modal wavenumber bTX;n, the radiation pattern is quasi-bandlimited (see
further), allowing to sample these radiation patterns. In the PML-MLFMA, the required number of samples 2Q TX;n þ 1 can be
determined by analyzing the bandwidth (spectral content) of the total radiation pattern
Rð/Þ ¼ eþjbTX;nð/Þ� r0�rc
sð Þ� r�rc

oð Þ½ �: ð9Þ
Rð/Þ is periodic with period 2p on the real axis (/ 2 R). It can be expanded in its Fourier series
Rð/Þ ¼
Xþ1

q¼�1
cqe�jq/; ð10Þ
where
cq ¼
1

2p

Z 2p

0
Rð/Þejq/d/ ð11Þ

¼ 1
2p

Z 2p

0
ejbTX;nD cosð/�aÞejq/d/; ð12Þ
with D ¼ j r0 � rc
s

� �
� r� rc

o

� �
j and tan a ¼ ŷ� r0�rc

sð Þ� r�rc
oð Þ½ �

x̂� r0�rc
sð Þ� r�rc

oð Þ½ �. Truncating this series, we obtain
Rð/Þ ¼
XþQTX;n

q¼�QTX;n

cne�jq/ þ SQTX;n ð/Þ; ð13Þ
and the truncation error is given by
SQTX;n ð/Þ ¼
Xþ1

q¼QTX;nþ1

cqe�jq/ þ c�qejq/
� �

: ð14Þ
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For / 2 R we have
SQTX;n ð/Þ
�� �� 6 RQTX;n ¼

Xþ1
q¼QTX;nþ1

jcqj þ jc�qj
� �

: ð15Þ
Using Bessel’s first integral [20] for integer q,
JqðzÞ ¼
1
p

Z p

0
cosðqh� z sin hÞdh ¼ 1

2p

Z 2p

0
ejqhe�jz sin hdh; ð16Þ
it is readily seen that
RQTX;n ¼ 2
Xþ1

q¼QTX;nþ1

jJqðbTX;nDÞj: ð17Þ
In [21] it is shown that
jJqðzÞj 6
z
2

�� ��qejIðzÞj

Cðqþ 1Þ for q > �1
2
; ð18Þ
where IðzÞ is the imaginary part of z and CðzÞ is the Gamma function [20]. Introducing the incomplete Gamma function
Cðz;uÞ �

R1
u tue�tdt [20], and putting a ¼ j bTX;nD

2 j and b ¼ jIðbTX;nDÞj, a first upper bound of RQTX;n is found:
RQTX;n 6 2eb
Xþ1

q¼QTX;nþ1

aq

q!
ð19Þ

¼ 2eaþb 1� CðQ TX;n þ 1; aÞ
CðQTX;n þ 1Þ

� 	
: ð20Þ
In (19) and (20) the astute reader will recognize the Erlang or cumulative Poisson distribution [22]. Substituting the inte-
gral definitions of the Gamma function and the incomplete Gamma function into (20) yields
RQTX;n 6 2 eaþb

R a
0 tQTX;n e�t dt
CðQ TX;n þ 1Þ : ð21Þ
Since a P 0, we obtain
Z a

0
tQTX;n e�t dt 6

Z a

0
tQTX;n dt ¼ aQTX;nþ1

Q TX;n þ 1
; ð22Þ
which majorizes (21) (and thus jSQTX;n ð/Þj):
RQTX;n 6 2 eaþb aQTX;nþ1

ðQ TX;n þ 1ÞCðQ TX;n þ 1Þ ¼ 2 eaþb aQTX;nþ1

ðQ TX;n þ 1Þ! : ð23Þ
The following double inequality [23]
ffiffiffiffiffiffiffi
2p
p

mmþ1=2 e�mþ1=ð12mþ1Þ < m! <
ffiffiffiffiffiffiffi
2p
p

mmþ1=2 e�mþ1=ð12mÞ ð24Þ
provides bounds for the factorial function. This implies
RQTX;n 6
2 eaþbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðQTX;n þ 1Þ
p

e1=ð12QTX;nþ13Þ
Q TX;n þ 1

ae

� 	�ðQTX;nþ1Þ

: ð25Þ
It is clear that for Q TX;n P 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QTX;n þ 1

q
e1=ð12QTX;nþ13Þ P e1=13 > 1: ð26Þ
Hence another upper bound is obtained as
RQTX;n <

ffiffiffiffi
2
p

r
eaþb QTX;n þ 1

ae

� 	�ðQTX;nþ1Þ

: ð27Þ
The right hand side of (27) has a maximum for QTX;n ¼ a� 1. For increasing Q TX;n, larger than a� 1, the truncation error
decreases faster than exponentially to zero, and hence, it can be stated that the spectral content of the radiation pattern Rð/Þ
is quasi-bandlimited, allowing to sample it with controllable accuracy.
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2.4. A simple upper bound for the number of samples 2QTX;n þ 1

In the previous section upper bounds have been derived, expressing the truncation error as a function of the number of sam-
ples. A first appropriate expression for the truncation error is (20) (the Erlang distribution). Unfortunately, there does not exist
an analytical inverse of this cumulative distribution. Expressing 2Q TX;n þ 1 as a function of a desired accuracy, as is also
achieved with the excess bandwidth formula (8), is of practical use. Say an absolute accuracy E for the truncation as proposed
in (13) is desired. A second upper bound for the truncation error is given by (27), which we now demand to be smaller than E, i.e.
ffiffiffiffi

2
p

r
eaþb QTX;n þ 1

ae

� 	�ðQTX;nþ1Þ

< E: ð28Þ
The following notation is introduced
E0 ¼ � ln E � 1
2

ln
p
2
þ aþ b: ð29Þ
Since a P 0 and b P 0; E0 is certainly positive for E <
ffiffiffi
2
p

q
. Of course, we can always aim at a much lower E. Therefore, it is safe

to transform (28) into
E0

QTX;n þ 1
e

E0
QTX;nþ1 <

E0

ae
: ð30Þ
The Lambert-W function W ðzÞ [24] is the inverse function of z, with z defined as z �W ðzÞeW ðzÞ. WðzÞ is positive and
strictly increasing for z > 0. Applying this definition of WðzÞ yields
E0

QTX;n þ 1
< W

E0

ae

� 	
; ð31Þ
or finally, the accuracy E is met by demanding that
QTX;n >
E0

W E0
ae

� �� 1: ð32Þ
3. Experimental verification and error controllability

3.1. Theoretical accuracy of the plane wave decomposition (6)

Consider the constellation of Fig. 1 with r0 ¼ ð0;R; dÞ; rc
s ¼ ð0;0; dÞ; rc

o ¼ ð2RðBþ 1Þ;0; dÞ, and r ¼ ð2RðBþ 1Þ;�R; dÞ. So, the
source and observation point are located on the edge of the source and observation group, respectively. The parameter B
determines the number of buffer groups between the source and the observation group. A top view of this constellation
is shown in Fig. 2.

In this section, the theoretical accuracy of the plane wave decomposition (6) is analyzed, using Mathematica� 5.1. Hence,
numerical errors do not come into play. We consider a single mode and denote its wavenumber as bTX;n ¼ b ¼ jbje�jh; h : 0! p

2.
In this section, the subscript on the number of samples 2Q þ 1 is omitted for simplicity. Furthermore, consider jbjR ¼ 3 and
B ¼ 5. Fig. 3 shows the relative error of the plane wave decomposition (6) with respect to the Hankel function, i.e.
Hð2Þ0 bjr� r0jð Þ �
PQ

q¼�Q
ejbð/qÞ� r0�rc

sð Þ Tqðb; jrcc
soj;/

cc
soÞe�jbð/qÞ�ðr�rc

oÞ
h i

Hð2Þ0 bjr� r0jð Þ

���������

���������
; ð33Þ
Fig. 2. Top view of the constellation.



Fig. 3. Theoretical accuracy of the plane wave decomposition (6) for an increasing sampling rate and for five different values of h.

Fig. 4. Theoretical accuracy of the plane wave decomposition (6) for increasing losses h and at a fixed sampling rate, i.e. 2Q þ 1 ¼ 51.
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as a function of the number of samples 2Q þ 1 and for five different values of h. As in Mathematica� the accuracy is not limited
to, e.g., double precision (16 digits), any desired accuracy for the plane wave decomposition can be achieved by increasing Q.
The staircase convergence, clearly visible in Fig. 3, is most prominent for the particular constellation of Fig. 2 where the vectors

r0 � rc
s

� �
� ðr� rc

oÞ

 �

and rc
o � rc

s

� �
are perpendicular and this is less pronounced when these vectors are parallel. From Fig. 3, it

can also be concluded that the relative error increases for increasing h. In Fig. 4, again it is demonstrated that for a fixed num-
ber of samples 2Q þ 1 ¼ 51 (see also Q ¼ 25 in Fig. 3), the accuracy decreases when h increases, i.e. when the medium be-
comes more and more lossy, up to the point where both the medium’s permittivity and permeability are purely imaginary
numbers and b is located on the negative imaginary axis (h ¼ p=2). Strongly evanescent modes can exhibit such behavior.



Table 1
Estimates Q, obtained by using (8), (20), and (32), leading to an actual number of digits of accuracy for the plane wave decomposition (6), as a function of a
desired number of digits of accuracy d0 and for a varying parameter h.

Desired digits
of accuracy d0

h Estimated
Q, using (8)

Actual digits of accuracy,
following (8)

Estimated Q,
using (20)

Actual digits of
accuracy, following (20)

Estimated Q,
using (32)

Actual digits of
accuracy, following (32)

3 0 13 4.55 12 4.17 15 5.90
p=8 13 4.00 15 5.20 18 7.55
p=4 13 3.46 17 5.77 20 8.04
3p=8 13 3.08 19 6.46 21 7.70
p=2 13 2.95 19 6.27 21 7.48

6 0 17 7.35 16 6.96 19 8.91
p=8 17 6.50 19 7.88 21 9.31
p=4 17 5.77 21 8.33 23 9.67
3p=8 17 5.27 22 8.69 24 10.02
p=2 17 5.10 23 8.73 25 10.02

9 0 21 10.55 20 10.17 22 11.91
p=8 21 9.31 22 10.51 25 12.34
p=4 21 8.33 24 10.80 26 12.23
3p=8 21 7.70 25 10.28 28 12.74
p=2 21 7.48 26 11.08 28 12.43

12 0 24 13.72 24 13.72 26 15.59
p=8 24 12.07 26 13.66 28 15.27
p=4 24 10.80 27 12.47 29 13.92
3p=8 24 10.02 29 12.98 31 14.36
p=2 24 9.75 29 12.67 31 14.03

15 0 26 15.59 27 15.93 29 17.84
p=8 26 13.66 29 15.51 31 17.13
p=4 26 12.23 30 15.16 32 16.65
3p=8 26 11.37 32 15.55 33 15.77
p=2 26 11.08 32 15.19 34 16.59
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It was already suggested in [25] – for a 3-D configuration – that replacing b by its absolute value jbj in the excess band-
width formula (8) does not provide an accurate estimate for the number of samples in a lossy medium and that Q should be
chosen slightly larger to maintain the same level of accuracy for moderate losses. The above derived formulas (20) and (32),
quantify this statement since they explicitly include the losses (via the parameter b), albeit not exactly (Eqs. (20) and (32)
only provide upper bounds). In Table 1 the estimates for Q are given for several desired relative accuracies, expressed as the
desired number of digits of accuracy d0, and for a varying parameter h by using three different estimates: (i) the excess band-
width formula (8), with b replaced by its absolute value jbj, (ii) the estimate (20), which can be inverted in Mathematica� by
using a root finding procedure, as such expressing Q as a function of the desired accuracy, and (iii) the upper bound (32).
Also, the actual relative accuracy, expressed as the actual number of digits of accuracy, obtained by using these three esti-
mates, is presented in Table 1. From this table it can be concluded that:

� When b is real (h ¼ 0), the excess bandwidth formula (8) provides a good estimate for Q, yielding the desired number of
digits of accuracy.

� When b is located in the fourth quadrant of the complex b-plane (0 < h 6 p=2), the excess bandwidth formula (8) – where
b is replaced by jbj – yields an underestimation of Q, often leading to a lower number of digits of accuracy than what was
required. These values are indicated in bold italic in the table.

� Using Eq. (20) always leads to the required relative error.
� Using Eq. (32) always leads to the required relative error too. On the one hand, (32) sometimes overestimates the number

of samples 2Q þ 1, leading to a few digits of accuracy more than what is desired. On the other hand, and in contrast with
(20), a root finding procedure to determine Q is not required.
3.2. Numerical accuracy of the plane wave decomposition (6)

Again, the constellation as in the previous section (Fig. 2) is used. But now the accuracy of the plane decomposition (6) is
tested numerically in Matlab� 7.4. Hence, the maximum achievable precision is limited to 16 digits (i.e. double precision).
Fig. 3 is reproduced with this limited accuracy, which leads to Fig. 5. First, consider the curve for the lossless case h ¼ 0. This
characteristic numerical behavior of the accuracy as a function of Q has been abundantly discussed in the past [16]. A region
with controllable accuracy can be identified for which the error decreases by increasing Q, according to the excess bandwidth
formula (8). Then, a plateau is reached, because the smallest relative error is limited to machine precision (here 16 digits).
For high Q, the relative error increases again, for reasons explained in Section 2.2, i.e. the argument of the Hankel functions in
the translator operator (7) becomes smaller than the order, leading to numerical round-off errors. This phenomenon has also
been discussed in [16]. The extent of plateau for which the maximum accuracy is reached can be enlarged by increasing the
buffer. In Fig. 5, the buffer is B ¼ 5, which is a relatively small buffer. Next, for complex b (0 < h 6 p=2), the accuracy is lower,



Fig. 5. Numerical accuracy of the plane wave decomposition (6) for an increasing sampling rate and for five different values of h.
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as expected (see Section 3.1). However, an extra numerical error is induced as well. For real wavenumbers b, the modulus of
the radiation pattern is one for every sampling angle, i.e. jRð/qÞj ¼ 1, q ¼ �Q ; . . . ;Q . For complex b;Q samples will exhibit a
decaying exponential behavior and the other Q samples correspond to increasing exponentials. Summation of increasing and
decreasing exponentials unavoidably leads to numerical errors, as can be seen in Fig. 5. Increasing the buffer B leads to better
results, but still 16 digits of accuracy cannot always be reached. E.g., for B ¼ 15 and h ¼ p=2, the minimal attainable relative
error is 10�12.

Some modes of the layered medium Green functions correspond to complex wavenumbers with large negative imaginary
parts. So, the question arises, is a controllable accuracy attainable in the PML-MLFMA? The answer is yes, as will be shown in
the next section.

3.3. Numerical accuracy of the layered medium Green functions GAðrjr0Þ and GV ðrjr0Þ

Consider the constellation of Fig. 1. For a ‘realistic substrate’, with e.g. �r > 1 and lr ¼ 1 and/or with multiple dielectric lay-
ers, the Green functions are classically computed by numerically evaluating Sommerfeld-type integrals. However, to have an
exact reference solution, an air-substrate is used here, as for this special configuration the layered medium Green functions are
analytically known. The air-substrate has a relative permittivity �r ¼ 1, a relative permeability lr ¼ 1, and a thickness
d ¼ 1 mm. The structure is closed by a PEC-backed PML, i.e. a PEC is placed at z ¼ dþ ~D, with ~D ¼ 0:25e�jp=4 m. The angular fre-
quency is fixed at x ¼ 2p109 Hz. For the air-substrate, the layered medium Green functions are obtained by solving a free space
problem with two elementary dipole sources, one placed at r0 ¼ ðx0; y0; dÞ and an image source situated at ðx0; y0;�dÞ, yielding
GA jr� r0jð Þ ¼ l0

4p
e�jk0 jr�r0 j

jr� r0j �
e�jk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr�r0 j2þ4d2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr� r0j2 þ 4d2

q
0
B@

1
CA; ð34Þ

GV jr� r0jð Þ ¼ 1
4p�0

e�jk0 jr�r0 j

jr� r0j �
e�jk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr�r0 j2þ4d2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr� r0j2 þ 4d2

q
0
B@

1
CA; ð35Þ
as such providing an accurate reference to test the error controllability. Conveniently, the wavenumbers are analytically
known for this configuration:
bTE;n ¼ bTM;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 �
np

dþ ~D

� 	2
s

; n ¼ 1; . . . ;1: ð36Þ
From (36), it is immediately clear that the modal wavenumbers can have large negative imaginary parts, which leads to
higher sampling rates compared to real wavenumbers and which also introduces numerical errors, as explained before. For-
tunately, in the decompositions (1) and (2), the relative importance of high order modes decreases with increasing order n.
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This is due to the decaying character of the Hankel functions Hð2Þ0 ðbTX;njr� r0jÞ. In the series (1) and (2), for larger values of
jr0 � rj only a few modes are needed, for small values of jr0 � rj many modes are needed. This property is exploited in the
implementation of the PML-MLFMA and demonstrated below. Instead of using formulas as (8), (20), or (32) for each mode
separately, the relative importance of the different terms in (1) and (2) is taken into account. The following heuristic ap-
proach is implemented to control the error:

(i) A global accuracy for the Green functions is chosen. This desired accuracy is characterized by d0, i.e. the number of
digits of accuracy w.r.t. the actual open space layered medium Green functions, in this case (34) and (35).

(ii) A maximum numbers of TE- and TM-polarized modes M for the series expansions (1) and (2) is selected. This number
M determines the maximum achievable accuracy at a certain distance jr� r0j [10,11]. Of course, the relative error 10�d0

has to be attainable by using M modes.
(iii) Next, the required sampling rates are determined. Therefore, for each mode – represented by its wavenumber

bTX;n;n ¼ 1; . . . ;M – the minimal number of samples 2Q TX;n þ 1 for which the condition
Table 2
Charact

level

1
2
3
4

Fig
XQTX;n

q¼�QTX;n

Cq

0
@

1
A� Hð2Þ0 ðbTX;njr� r0jÞ

������
������ <

10�d0

M
Hð2Þ0 ðbTM;1jr� r0jÞ
��� ���; ð37Þ

with

Cq ¼ ejbTX;nð/qÞ� r0�rc
sð Þ TqðbTX;n; jrcc

soj;/
cc
soÞ e�jbTX;nð/qÞ� r�rc

oð Þ; ð38Þ

is fulfilled, is computed. This can be done by first applying formula (32), which leads to a quite accurate estimate for
QTX;n that might still be slightly too large. Therefore, in a second step, QTX;n can be gradually decreased while (37) is
checked, as such leading to the desired, minimal Q TX;n.
eristics of the levels used in Fig. 6. For jrcc
soj < 3k0 a classical evaluation technique needs to be adopted.

R minðjrcc
sojÞ maxðjrcc

sojÞ number of modes needed
for d0 ¼ 3

number of modes needed
for d0 ¼ 6

number of modes needed
for d0 ¼ 9

k0=4 3k0 6k0 17 26 34
k0=2 6k0 12k0 12 16 21
k0 12k0 24k0 9 11 14
2k0 24k0 48k0 6 8 9

. 6. Numerical accuracy of GAðjrjr0 jÞ, using (6) and (1), compared with (34) as a function of jrcc
soj and for three different target accuracies 10�d0 .
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(iv) If in the previous step QTX;n drops below zero, this means that the mode under consideration is not required to obtain
the desired accuracy 10�d0 . This mode will then no longer be used.

Now this approach is verified for the air-substrate as defined before. We consider four different levels in the MLFMA. At
each level the source and observation are placed at the edge of the groups, i.e. at r0 ¼ ð0;R; dÞ and r ¼ ð2ðBþ 1ÞR;�R; dÞ,
respectively, where 2ðBþ 1ÞR ¼ jrcc

soj, i.e. the distance between the two groups (see also Fig. 2). The characteristics of the lev-
els are summarized in Table 2. In Fig. 6 the relative accuracy for GAðrjr0Þ is given for three different target accuracies 10�d0 and
as a function of the distance jrcc

soj between the center of the source and observation group. The different levels are clearly
visible. Within one level, the number of modes is kept constant. It is clear from Fig. 6 that the above described algorithm
to select the number of samples for each mode, leads to a controllable accuracy for the Green function in the PML-MLFMA.
Also in Fig. 6, the maximal attainable accuracy is shown, which is given by the accuracy of the decomposition (1). This accu-
racy is approximately 11 digits, which is obtained by using M ¼ 50 modes. Note that the results for GV ðrjr0Þ are not shown, as
for this special configuration with �r ¼ lr ¼ 1, the results are exactly the same.

A last important remark has to be made. The above example, using the air-substrate, is definitely not the best case sce-
nario. For a ‘realistic substrate’, with e.g. �r > 1 and lr ¼ 1, there is always a TM-polarized surface wave present with
k0 < bTM;1 < k0

ffiffiffiffiffi
�r
p

. Since this surface wave will dominate the accuracy of the Green function, this TM-polarized mode is used
as a reference in formula (37), leading to very good results. Although it would be very hard to prove that the above proposed
method to control the Green function’s accuracy works for any possible configuration, many tests have shown that this is the
case. A counterexample has not been found so far.
4. Conclusions

In this paper, the error controllability of the crux of the PML-MLFMA, viz. the pertinent layered medium Green functions,
has been thoroughly investigated. In the PML-MLFMA, the Green functions are written as a series expansion of modes. Each
mode corresponds to a (lossy) 2-D homogeneous space Green function, which is further decomposed into a set of plane
waves. By rigorously deducing upper bounds for the required sampling rate of these plane wave decompositions, it is shown
that the spectral content of the radiation patterns of each mode in the series expansion is quasi-bandlimited, allowing to
sample them with a controllable accuracy. These new upper bounds are immediately applicable in 2-D MLFMAs, especially
when the homogenous background medium is lossy. Next, these new formulas were used to develop a heuristic approach
that allows to control the error of the layered medium Green functions that constitute the core of the PML-MLFMA. Both
the upper bounds and the heuristic approach were tested by means of several numerical experiments, clearly demonstrating
their validity and capabilities.
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